I found this document from Roland, published in 1978. The information in here is still valuable – and presented as an excellent introduction.
Category: recordings
Vinyl simulation
Tokyo Dawn Records has released a vinyl mastering simulator, which includes a prediction of the end result of the mastering process.
If you have a plan to becoming a mastering engineer for vinyl, you can start practicing immediately.
Burmese Colour Needles
Once-upon-a-time I posted a little thing about Burmese Colour Needles for grammophones. Then, today, I received an email from the owner of www.burmesecolourneedles.com a company owned by Andy Briggs, where you can buy brand new ones!
Andy also has a YouTube channel that is well worth visiting.
SNR vs DNR
When you look at the datasheet of an audio device, you may see a specification that states its “signal to noise ratio” or “SNR”. Or, you may see the “dynamic range” or “DNR” (or “DR”) lists as well, or instead.
These days, even in the world of “professional audio” (whatever that means), these two things are similar enough to be confused or at least confusing, but that’s because modern audio devices don’t behave like their ancestors. So, if we look back 30 years ago and earlier, then these two terms were obviously different, and therefore independently usable. So, in order to sort this out, let’s take a look at the difference in old audio gear and the new stuff.
Let’s start with two of basic concepts:
- All audio devices (or storage media or transmission systems) make noise. If you hold a resistor up in the air and look at the electrical difference across its two terminals and you’ll see noise. There’s no way around this. So, an amplifier, a DAC, magnetic tape, a digital recording stored on a hard drive… everything has some noise floor at the bottom that’s there all the time.
- All audio devices have some maximum limit that cannot be exceeded. A woofer can move in and out until it goes so far that it “bottoms out” on the magnet or rips the surround. A power amplifier can deliver some amount of current, but no higher. The headphone output on your iPhone cannot exceed some voltage level.
So, the goal of any recording or device that plays a recording is to try and make sure that the audio signal is loud enough relative to that noise that you don’t notice it, but not so loud that the limit is hit.
Now we have to look a little more closely at the details of this…
If we take the example of a piece of modern audio equipment (which probably means that it’s made of transistors doing the work in the analogue domain, and there’s lots of stuff going on in the digital domain) then you have a device that has some level of constant noise (called the “noise floor”) and maximum limit that is at a very specific level. If the level of your audio signal is just a weeee bit (say, 0.1 dB) lower than this limit, then everything is as it should be. But once you hit that limit, you hit it hard – like a brick wall. If you throw your fist at a brick wall and stop your hand 1 mm before hitting it, then you don’t hit it at all. If you don’t stop your hand, the wall will stop it for you.
In older gear, this “brick wall” didn’t exist in lots of gear. Let’s take the sample of analogue magnetic tape. It also has a noise floor, but the maximum limit is “softer”. As the signal gets louder and louder, it starts to reach a point where the top and bottom of the audio waveform get increasingly “squished” or “compressed” instead of chopping off the top and bottom.
I made a 997 Hz sine wave that starts at a very, very low level and increases to a very high level over a period of 10 seconds. Then, I put it through two simulated devices.
Device “A” is a simulation of a modern device (say, an analogue-to-digital converter). It clips the top and bottom of the signal when some level is exceeded.
Device “B” is a simulation of something like the signal that would be recorded to analogue magnetic tape and then played back. Notice that it slowly “eases in” to a clipped signal; but also notice that this starts happening before Device “A” hits its maximum. So, the signal is being changed before it “has to”.
Let’s zoom in on those two plots at two different times in the ramp in level.
Device “A” is the two plots on the top at around 8.2 seconds and about 9.5 seconds from the previous figure. Device “B” is the bottom two plots, zooming in on the same two moments in time (and therefore input levels).
Notice that when the signal is low enough, both devices have (roughly) the same behaviour. They both output a sine wave. However, when the signal is higher, one device just chops off the top and bottom of the sine wave whereas the other device merely changes its shape.
Now let’s think of this in terms of the signals’ levels in relationship to the levels of the noise floors of the devices and the distortion artefacts that are generated by the change in the signals when they get too loud.
If we measure the output level of a device when the signal level is very, very low, all we’ll see is the level of the inherent noise floor of the device itself. Then, as the signal level increases, it comes up above the noise floor, and the output level is the same as the level of the signal. Then, as the signal’s level gets too high, it will start to distort and we’ll see an increase in the level of the distortion artefacts.
If we plot this as a ratio of the signal’s level (which is increasing over time) to the combined level of the distortion and noise artefacts for the two devices, it will look like this:
On the left side of this plot, the two lines (the black door Device “A” and the red for Device “B”) are horizontal. This is because we’re just seeing the noise floor of the devices. No matter how much lower in level the signals were, the output level would always be the same. (If this were a real, correct Signal-to-THD+N ratio, then it would actually show negative values, because the signal would be quieter than the noise. It would really only be 0 dB when the level of the noise was the same as the signal’s level.)
Then, moving to the right, the levels of the signals come above the noise floor, and we see the two lines increasing in level.
Then, just under a signal level of about -20 dB, we see that the level of the signal relative to the artefacts starts in Device “B” reaches a peak, and then starts heading downwards. This is because as the signal level gets higher and higher, the distortion artefacts increase in level even more.
However, Device “A” keeps increasing until it hits a level 0 dB, at which point a very small increase in level causes a very big jump in the amount of distortion, so the relative level of the signal drops dramatically (not because the signal gets quieter, but because the distortion artefacts get so loud so quickly).
Now let’s think about how best to use those two devices.
For Device “A” (in red) we want to keep the signal as loud as possible without distorting. So, we try to make sure that we stay as close to that 0 dB level on the X-axis as we can most of the time. (Remember that I’m talking about a technical quality of audio – not necessarily something that sounds good if you’re listening to music.) HOWEVER: we must make sure that we NEVER exceed that level.
However, for Device “B”, we want to keep the signal as close to that peak around -20 dB as much as possible – but if we go over that level, it’s no big deal. We can get away with levels above that – it’s just that the higher we go, the worse it might sound because the distortion is increasing.
Notice that the red line and the black line cross each other just above the 0 dB line on the X-axis. This is where the two devices will have the same level of distortion – but the distortion characteristics will be different, so they won’t necessarily sound the same. But let’s pretend that the the only measure of quality is that Y-axis – so they’re the same at about +2 dB on the X-axis.
Now the question is “What are the dynamic ranges of the two systems?” Another way to ask this question is “How much louder is the loudest signal relative to the quietest possible signal for the two devices?” The answer to this is “a little over 100 dB” for both of them, since the two lines have the same behaviour for low signals and they cross each other when the signal is about 100 dB above this (looking at the X-axis, this is the distance between where the two lines are horizontal on the left, and where they cross each other on the right). Of course, I’m over-simplifying, but for the purposes of this discussion, it’s good enough.
The second question is “What are the signal-to-noise ratios of the two systems?” Another way to ask THIS question is “How much louder is the average signal relative to the quietest possible signal for the two devices?” The answer to this question is two different numbers.
- Device “A” has a signal-to-noise ratio of about 100 dB , because we’re going to use that device, trying to keep the signal as close to clipping as possible without hitting that brick wall. In other words, for Device “A”, the dynamic range and the signal-to-noise ratio are the same because of the way we use it.
- Device “B” has a signal-to-noise ratio of about 80 dB because we’re going to try to keep the signal level around that peak on the black curve (around -20 dB on the X-axis). So, its signal-to-noise ratio is about 20 dB lower than its dynamic range, again, because of the way we use it.
The problem is, these days, a lot of engineers aren’t old enough to remember the days when things behaved like Device “B”, so they interchange Signal to Noise and Dynamic Range all willy-nilly. Given the way we use audio devices today, that’s okay, except when it isn’t.
For example, if you’re trying to connect a turntable (which plays vinyl records that are mastered to behave more like Device “B”) to a digital audio system, then the makers of those two systems and the recordings you play might not agree on how loud things should be. However, in theory, that’s the problem of the manufacturers, not the customers. In reality, it becomes the problem of the customers when they switch from playing a record to playing a digital audio stream, since these two worlds treat levels differently, and there’s no right answer to the problem. As a result, you might need to adjust your volume when you switch sources.
Technical considerations when mastering for vinyl
This article was sent to me by a friend of mine. It’s worth the read!
Historical Context
This episode of 99 Percent Invisible tells the story of the Recording Ban of 1942, the impact on the rise of modern jazz music, and the parallels with the debates between artists and today’s streaming services. It’s worth the 50 minutes and 58 seconds it takes to listen to this!
At the end of that episode, the ban on record manufacture is mentioned, almost as an epilogue. This page from the January, 1949 issue of RCA’s “Radio Age” magazine discusses the end of that ban.
Interestingly, that same issue of the magazine has an article that introduces a new recording format: 7-inch records operating at 45 revolutions per minute! The article claims that the new format is “distortion free” and “noise-free”, stating that this “new record and record player climax more than 10 years of research and refinement in this field by RCA.”
Fibre needles
Reading through some old magazines again…
This time, it’s The Gramophone magazine from October, 1930. In the editorial, Compton Mackenzie says
What caught my eye was the discussion of gramophone needles made of “hard wood”, and also the prediction that “the growth of electrical recording steps … to grapple with that problem of wear and tear.”
The fact that electrical (instead of mechanical) recording and playback was seen as a solution to “wear and tear” reminded me of my first textbook in Sound Recording where “Digital Audio” was introduced only within the chapter on Noise Reduction.
Later in that same issue, there is a little explanation of the “Electrocolor” and “Burmese” needles.
The March 1935 issue raises the point of wear vs. fidelity in the Editorial (which starts by comparing players with over-sized horns).
I like the comment about having to be in the “right mood” for Ravel. Some things never change.
What’s funny is that, now that I’ve seen this, I can’t NOT see it. There are advertisements for fibre, thorn, and wood needles all over the place in 1930s audio magazines.
Variations on the Goldberg Variations
As part of a listening session today, I put together a playlist to compare piano recordings. I decided that an interesting way to do this was to use the same piece of music, recorded by different artists on different instruments in different rooms by different engineers using different microphone and techniques. The only constant was the notes on the page in front of the performer.
A link to the playlist is here: LINK TO TIDAL
Playing through this, it’s interesting to pay attention to things like:
- Overall level of the recording
- Notice how much (typically) quieter the Dolby Atmos-encoded recording is than the 2.0 PCM encoded ones. However, there’s a large variation amongst the 2.0 recordings.
- Monophonic vs. stereo recordings
- Perceived width of the piano
- Perceived width of the room
- How enveloping the room is (this might be different from the perceived width, but these two attributes can be co-related, possibly even correlated)
- Perceived distance to the piano.
- On some of the recordings, the piano appears to be close. The attack of each note is quite fast, and there is not much reveberation.
- On some of the recordings, the piano appears to be distant – more reveberant, with a soft, slow attack on each note.
- On other recordings, it may appear that the piano is both near (because of the fast attack on each hammer-to-string strike) and far (because of the reverberation). (Probably achieved by using a combination of microphones at different distances – or using digital reverb…)
- The length of the reverberation time
- Whether the piano is presented as one instrument or a collection of strings (e.g. can you hear different directions to (or locations of) individual notes?)
- If the piano is presented as a wide source with separation between bass and treble, is the presentation from the pianist’s perspective (bass on the left, treble on the right) or the audience’s perspective (bass on the left, treble on the right… sort of…)
32 is a lot of bits…
Once upon a time, I did a blog posting about why, when we test digital audio systems, we typically use a 997 Hz sine wave instead of a 1000 Hz tone.
The short version of this is the following:
Let’s say that I digitally create a (not-dithered) 1000 Hz sine wave at 0 dB FS in a 16-bit system running at 48 kHz. This means that every second, there are exactly 1000 cycles of the wave, and since there are 48,000 samples per second, this, in turn means that there is one cycle every 48 samples, so sample #49 is identical to sample #1.
So, we are only testing 48 of the possible 2^16 ( = 65,536) quantisation values, right?
Wrong. It’s worse than you think.
If we zoom in a little more, we can see that Sample #1 = 0 (because it’s a sine wave). Sample #25 is also equal to 0 (because 48,000 / 1,000 is a nice number that is divisible by 2).
Unfortunately, 48,000 / 1,000 is a nice number that is also divisible by 4. So what? This means that when the sine wave goes up from 0 to maximum, it hits exactly the same quantisation values as it does on the way from maximum back down to 0. For example, in the figure below, the values of the two samples shown in red are identical. This is true for all symmetrical points in the positive side and the negative side of the wave.
Jumping ahead, this means that, if we make a “perfect” 1 kHz sine wave at 48 kHz (regardless of how many bits in the system) we only test a total of 25 quantisation steps. 0, 12 positive steps, and 12 negative ones.
Not much of a test – we only hit 25 out of a possible 65,546 values in a 16-bit system (or 25 out of 16,777,216 possible values in a 24-bit system).
What if I wanted to make a signal that tested ALL possible quantisation values in an LPCM system? One way to do this is to simply make a linear ramp that goes from the lowest possible value up to the highest possible value, step by step, sample by sample. (of course, there are other ways, but it doesn’t matter… we’re just trying to hit every possible quantisation value…)
How long would it take to play that test signal?
First we convert the number of bits to the number of quantisation steps. This is done using the equation 2^bits. So, you get the following results
Number of Bits | Number of Quantisation Steps |
16 | 65,536 |
24 | 16,777,216 |
32 | 4,294,967,296 |
If the value of each sample has a different quantisation value, and we play the file at the sampling rate then we can calculate the time it will take by dividing the number of quantisation steps by the sampling rate. This results in the following:
Sampling Rate (kHz) | 16 Bits | 24 Bits | 32 Bits |
44.1 | 1.5 seconds | 6.4 minutes | 27.1 hours |
48 | 1.4 seconds | 5.8 minutes | 24.9 hours |
88.2 | 0.7 seconds | 3.2 minutes | 13.5 hours |
96 | 0.7 seconds | 2.9 minutes | 12.4 hours |
176.4 | 0.4 seconds | 1.6 minutes | 6.8 hours |
192 | 0.3 seconds | 1.5 minutes | 6.2 hours |
352.8 | 0.2 seconds | 47.6 seconds | 3.4 hours |
384 | 0.2 seconds | 43.7 seconds | 3.1 hours |
705.6 | 0.1 seconds | 23.8 seconds | 1.7 hours |
768 | 0.1 seconds | 21.8 seconds | 1.6 hours |
So, the moral of the story is, if you’re testing the validity of a quantiser in a 32-bit fixed-point system, and you’re not able to do it off-line (meaning that you’re locked to a clock running at the correct sampling rate) you’d either (1) hope that it’s also a crazy-high sampling rate or (2) that you’re getting paid by the hour.
Why I am thinking about this?
I often get asked for my opinion about audio players; these days, network streamers especially, since they’re in style.
Let’s say, for example, that someone asked me to recommend a network streamer for use with their system. In order to recommend this, I need to measure it to make sure it behaves.
One of the tests I’m going to run is to ensure that every sample value on a file is accurately output from the device. Let’s also make it simple and say that the device has a digital output, and I only need to test 3 LPCM audio file formats (WAV, AIFF and FLAC – since those can be relied to give a bit-for-bit match from file to output). (We’ll also pretend that the digital output can support a 32-bit audio word…)
So, to run this test, I’m going to
- create test files that I described above (checking every quantisation value at all three bit depths and all 10 sampling rates)
- play them
- record them
- and then compare whether I have a bit-for-bit match from input (the original file) to the output
If you add up all the values in the table above for the 10 sampling rates and the three bit depths, then you get to a total of 4.2 DAYS of play time (playing audio constantly 24 hours a day) per file format.
So, say I wanted to test three file formats for all of the sampling rates and bit depths, then I’m looking at playing & recording 12.6 days of audio – and then I can start the analysis.
REALLY‽
Of course this is silly… I’m not going to test a 32-bit, 44.1 kHz file… In fact, if I don’t bother with the 32-bit values at all, then my time per file format drops from 4.2 days down to 23.7 minutes of play time, which is a lot more feasible, but less interesting if I’m getting paid by the hour.
However, it was fun to calculate – and it just goes to show how big a number 2^32 is…
Dialogues on the Prospects of Recording
This is a radio show by Glenn Gould from 1965 that is the audio version which was expanded by Gould into an article written for High Fidelity magazine’s 15th anniversary edition (which can be downloaded from this site. The article starts on page 46.)