This was nearly the last day of the restoration (sort of…)
The beechwood that will hold up the top plate. This is 21.4 mm from the lip of the casing, as are all of the other pieces.
The opposite side of the same part of the case. I’m hoping that the yellow leather will darken over time…
All of the wood in the case. Notice the bent wood at the top… Turns out that this didn’t work… There wasn’t enough room between the inside of the case and the horn, so it had to go.
The alternative solution, using large washers directly on the inside of the case.
The new mainspring, ready to be greased and wound into the barrel.
The mainspring in the barrel, with teflon grease applied. Notice that it winds clockwise. Also note that the hook on the inner sleeve is grabbing the spring end. This is important, and a little difficult to manage…
Closing up the mainspring barrel, rotating about 45 degrees each time, and tightening only a little at a time.
Teflon grease on all the inner parts. This was a good idea – except for the axles of the speed regulator. The grease was a little too viscous, so it was replaced with WD-40.
Everything’s back together. All those photos I took at the beginning helped a lot during re-assembly.
The thick rubber compression washers are used to help level everything later.
Motor’s back in… time to level things up.
The platter is a little high on the left (relative to the top side of the plywood) so two screws get loosened and two get tightened. The rubber washers keep things from vibrating, and allow for this adjustment.
The finished gramphone!
With the tonearm clipped back for transport. The crank is clipped into the lid on the right side.
Crank in place, ready to wind up the spring.
The tonearm out, but in its resting position.
Playing a record for the first time in a long time!!!!
Seems that I need to work on the speed regulator… But it works – which it hasn’t done, probably for many years…
Some more bits and pieces of work this time, mostly leather work.
Yesterday was spent colour-testing the dye with some scraps first. The bottom piece is vegetable tanned leather without dye. The middle piece is with one light coat of dye. The top piece is thoroughly soaked with the same dye. The white balance in this photo is a bit weird – but the top one is the winner. It’s a yellow alcohol-based dye.
Then the remaining pieces were cut and dyed, the hardware is in, and the insert for the handle is formed. (At this stage, nothing was glued, since the leather was still wet.) The binder clips are there to shape the leather around the small piece of 2 mm thick leather inside the handle that creates the shape. The irregularity in the colour is due to the fact that the dye hasn’t finished drying yet.
All the stitching is done, and the handle is burnished. The handle and tabs are 2 mm leather, and the straps are 1.3 mm thick, give or take. I’ll punch the hole in the strap when it’s all assembled so as to ensure that it’s in the right place.
The above photo shows grease-proof paper glued to the inside of the bottom casing. This will protect the interior from any grease or oil that drops off the drivetrain. This is a pretty safe assumption, looking at the black grease stains that are there already.
The paper is cellulose-coated baking paper, and it’s glued in with water-based bookbinders glue. Once it’s dry (tomorrow), the white color will become transparent. Then I’ll put in another piece that wraps around the sidewall, since the player will often be set on its end.
In addition to this, the blocks of wood are ready to be inserted – almost all of them cut out of 10 mm thick beech. Instead of the canvas, I plan on using a 5 mm thick strip of beech, but this will have to be steam-bent to follow the curve of the top. We’ll see how well that works out – never tried steam-bending wood before… these will all be held in place with M3 Chicago Bolts with the non-slotted nut on the outside of the case. This will look almost exactly like the original rivets, but it will mean that everything will be much easier to disassemble in the future – just in case…
The new mainspring arrived in the mail today from Lindholts; it looks like it might need a couple of small modifications to work, but it’s a much better fit than the one I had on hand. So the next big days will be spent re-assembling the drive train and inserting the wood parts.
One small setback today. I found the right-shaped screws (to replace the random ones that were holding it together) at Birger A. Handel in Slagelse. The right shape – but the wrong colour. They’re brass, and the originals are all either nickel- or chrome-plated. A found a nickel-plating company near here in Herning, but they emailed me today to tell me that they’re not interested in plating 30 tiny screws for me. Not much profit in that I guess… Oh well. Hopefully, some day, I’ll find replacement screws. Until then, my Lido will be a lovely chrome / brass burst of colour!
Today was spent doing a bunch of small jobs while I wait for some replacement parts to arrive.
For starters, I found two needles under the hinge on the bottom half of the case. They’ll come in handy later!
The interior of the case, showing the four wood blocks to which the top screws on. Funnily, these are made of three different types of wood: pine, birch, and beech. I suspect that this was not strategic – but just a question of using whatever was on-hand. The lining is a waxy paper – the black stains are grease that has dripped down from the drive mechanism.
The four pieces of wood are two different heights from the top edge of the casing, although I suspect that this would have been custom-fitted. They’re attached to the outer casing using either tacks (the largest piece on the right) or split rivets that were bent over to lock the wood in place. The wood parts are not glued onto the case. All of the rivet and tack heads of these are badly rusted – so they’re coming out…
One of the split rivets after the wood has been removed. The wood did not survive the removal process. The hole on the far left is the opening for the crank.
The wood in the process of removal. I’ll just make new blocks to replace these…
The handle and strap are a different colour than the case, and are in quite bad shape. In addition, the hardware is badly rusted. This will all get replaced with new parts.
The handle and strap are attached with the same split rivets, but bent around a canvas material that’s glued to the inside of the case, as can be seen in the photo above. The canvas is the dark square and rectangle. This canvas can’t be seen normally, because it’s covered by the wax paper. I peeled this off, because I’ll be replacing it with something a little more sturdy.
The rust on the exterior metal parts was cleaned up with a small wire brush on my Dremel tool. The before-and-after can be seen above. This took some time so as to not slip and carve into the case covering.
I used Simichrome to polish the metal tonarm. This appears to be plated brass. I’m not going to take apart the reproducer (the black part that holds the needle and contains the diaphragm).
If you look carefully, you’ll see a small set screw sticking out of the half of the tonearm on the right. That’s used to stop the front portion of the tonearm from making a full rotation when it’s swivelled back and forth onto the record, by hitting the portion of the threaded pipe that can be seen below.
So, if you’re dismantling the tonearm, remember to back off the set screw before separating the two parts.
I also started the leather work to make a new handle and strap. The replacement hardware and dye were ordered from laederiet.dk, near Aarhus (which is where I buy all my leather supplies).
Apart from all of that, I washed the exterior of the case with dish soap and a soft cloth – not too wet because there are some places where the covering is worn through and I don’t want water getting in there.
I also sprayed the interior fabric (maybe taffeta?) with an enzyme spray and rubbed it gently to remove some of the stains. Too much rubbing frays the fabric, so I had to be gentle…
The cap comes off the mainspring barrel by tapping it with a hammer while holding onto the barrel itself. The inside shaft was already able to move up and down, so it was obvious it was no longer attached to the mainspring itself. The block of wood is used to prevent the hammer from damaging the cap edge. You hit the wood instead of the metal.
With the cap off, it’s easy to see that the mainspring is unfortunately broken. So, there are two options: Try to drill a new hole at the end of the remaining spring. This will mean heating it up to soften the steel a little… OR Try to replace it with a new spring.
A shot of the axle and the broken end of the spring. There’s a hole at the end of that spring that is caught by the hook that you can see on the axle. That hook is actually part of a sleeve that slides off the axle itself, as can be seen below.
The gap in the sleeve sits on either side of a pin that sticks out from the axle. This prevents it from rotating.
The rest of the mainspring is out of the barrel. This has to be done carefully to prevent it jumping out and either breaking something or punching a hole in me. One way to do this is to hold onto it on both sides of the barrel with two hands, and lifting one side of the spring out. This will push its way out until it gets stopped by your other hand, then you just alternate hands to let it out 180 degrees at a time. The only thing to be careful of at the end is to avoid bending the spring, since it will be caught on the pin on the inside of the barrel.
The bottom plate and the centrifugal speed regulator. The axle with the toothed gear just lifts out.
A close-up of the speed regulator and the clutch wheel, still covered in grease. Note that the pins on the end of that axle sit in brass bearings that are just holes drilled into pins. However, the holes are not centred. So, if you back off the set screws on the “front” of the vertical post, you can rotate the brass pins to change the height of the axle. Only the set screws are threaded.
The underside of the top plate. The spring that can be seen there is used to prevent the screw from rotating counter-clockwise. (Clockwise rotation loosens the spring. Counter-clockwise tightens it.) The portion that sticks out on the right is the part that the handle screws into from the outside. So, you can screw it on, tighten the spring, but then, when you reverse the rotation of the handle, it just unscrews because the rotation is stoppped by that spring grabbing the axle.
Another view of the same part. Notice the small cotten pad that sticks out of the arm connected to the tall rod in the back. That’s the part that pushes against the clutch wheel to slow things down.
The top of that same part. There’s still plenty of old grease in the worm gear… I didn’t take anything apart more than this. All of the degreasing was done in the state the you see in the photos above.
Degreasing started by just scraping off the goop with small wooden picks that I made from scraps I had lying around. The next step was to spray on WD-40 degreaser and start wiping things down with paper towels and a stiff plastic brush. That procedure was repeated until things were looking clean, but not necessarily shiny.
The photo above shows most of the bits and pieces degreased and cleaned up.
One last close-up of the cotton pad that is used for the speed regulator.
Back to the spring… I decided to not try to heat the steel, bend it to a smaller radius, and drill a new hole. Instead, I remembered that I might have some lying around. About a year or two ago, I bought a collection of tools and leftover parts from a guy who had planned to try watch and clock repair as a retirement hobby. He had bought the collection from a retired watchmaker.
In that collection, there were some old mainsprings for mantle clocks. Time to dig those out…
First thing is to measure the Telefunken’s mainspring. Turns out its roughly 23 mm wide, 0.5 mm thick, about 3.5 m long (this is just a rough estimate based on pulling it as straight as I could for as far as I could…) and the barrel interior is 78 mm in diameter. This means that I’m looking for a mainspring that’s 23 x 0.5 x 3500 x 78 – give or take…
A box of old clock mainsprings that I happened to have lying around…
I selected the spring that best matched, based on the width, and thickness and unpacked it. This is a delicate matter that involves holding the spring in a thickly gloved hand, cutting the wire, and then slowly releasing it under a towel. That way, if it does jump, you’ll only get hit in the face with a towel…
Sadly, the spring that I had on hand was too short. So, I’ve ordered one from lindholds.dk. The one that’s coming is also not as long as the original, but hopefully, it’ll do the trick.
Tomorrow: Greasing and reassambling as much of the drivetrain as I can, and starting to clean up the case.
I recently bought a well-used Telefunken Lido portable gramophone. It’s in reasonable shape, but it certainly needs quite a lot of repair and/or restoration. For starters, it doesn’t work – probably because the drive spring is either broken or disonnected inside the barrel.
The plan is to get as much fixed on it this weekend… however, that plan may change as the work progresses.
I’ve already made use of this page, this page, and this video to get ready for the project (including learning from the mistakes of others…) My documentation might be of similar use to others – in addition to providing some info on how gramophones worked…
The lido, as-is before I start…
The platter just lifts off.
The diagonal arm is the speed control that adjusts a clutch mechanism that can be seen in photos below. The needle and membrane are locked in the “travel” position, which sits them down into the mouth of the horn (the dark rectangular area at the “back”).
The first step was to unscrew the locking lid stay on the left side of the horn opening. The next step is to unscrew the lid hinges from the main case. Both the lid stay and the hinges are riveted to the lid, so they stay on.
The next step was to remove the three screws that hold the pipe + membrane + needle assembly onto the wooden top plate in the top right corner. After these have been removed, it all just lifts off.
Next is to remove the 5 small screws around the outer edge of the wood top plate. These hold the entire assembly into the bottom part of the case.
The next step is to disassemble the mechanism from the wooden top plate. In order to do this, the speed regulation arm has to be disconnected from the pin that connects it to the clutch underneath. This is done by loosening at least one of the two set screws that grab the pin.
The photo above shows the control arm after separating it from the pin that goes down into the mechanism.
Once this is done, there are four large screws the have to come out. Those are the four holes near the right-hand yellow “Fona” sticker.
In order to remote the drive mechanism, it has to be gently angled to slide it out without the spindle hitting the wood, and snaking it out around the horn.
The mechanism after removal.
The underside of the wooden plate, showing the entire horn. This is probably made of lead by the looks of things…
The two vertical rods are the main spindle (on the left) and the clutch control (on the left). Turning the clutch control pushes a soft pad against the vertical clutch wheel that can be seen on the same axle as the centrifugal speed regulator weights.
There are four 11 mm hex nuts holding the top plate of the mechanism to the four posts. First, the rubber washers needed to be removed using a knife to separate them from the top plate. Then the four nuts are loosened and the top plate can be lifted off. This will take the clutch rod and the main spindle with it.
The photo above shows the bottom plate with the speed regulator and the spring barrel.
The two last photos, above, show the underside of the top plate, holding the main spindle on the left, the clutch rod in the middle, and the screw entry for the winding handle.
That’s it so far. Tomorrow will probably be spent disassembling the spring barrel and seeing whether it’s fixable. Then de-greasing and cleanup of the drive mechanism, re-greasing and re-assembly.
I was working on the sound design of a loudspeaker last week with some new people and software – so we had to get some definitions straight before we messed things up by thinking that we were using the same words to mean the same thing. I’ve made a similar mistake to this before, as I’ve written about here – and I don’t being reminded of my own stupidity repeatedly… (Or, as Stephen Wright once said “I’m having amnesia and deja vu at the same time – I think I’ve forgotten this before…”)
So, in this case on that day, we were talking about the lowly 2nd-order Low Pass Filter, based on a single biquad.
If you read about how to find the cutoff frequency of a low-pass filter, you’ll probably find out that you find the frequency where the gain is one half of the power of that in the bandpass portion of the filter’s response. Since 10*log10(0.5) = -3.01 dB, then this is also called the “3 dB down point” of the filter.
In my case, when I’m implementing a filter, I use the math provided by Robert Bristow-Johnson to calculate my biquad coefficients. You input a cutoff frequency (Fc), and a Q value, and (for a given sampling rate) you get your biquad coefficients.
The question then, is: is the desired cutoff frequency the actual measurable cutoff frequency of the system? (Let’s assume for the purposes of this discussion that there are no other components in the system that affect the magnitude response – just to keep it simple.)
The simple answer is: No.
For example, if I make a 2nd-order low pass filter with a desired cutoff frequency of 1 kHz (using a high enough sampling rate to not introduce any errors due to the bilinear transform) and I vary the Q from something very small (in this example, 0.1) to something pretty big (in this example, 20) I get magnitude response curves that look like the figure below.
It is probably already evident that these 25 filter responses plotted above that they do not all cross each other at the 1 kHz line. In addition, you may notice that there is only one of those curves that is -3.01 dB at 1 kHz – when the Q = 1/sqrt(2) or 0.707.
This begs the question: what is the gain of each of those filters at the desired value of Fc (in this case, 1 kHz)? This is plotted as the red line in the figure below.
This plot also shows the maximum gain of the filters for different values of Q. Notice that, in the low end, the maximum value is 0 dB, since the low pass filters only roll off. However, for Q values higher than 1/sqrt(2), there is an overshoot in the response, resulting in a boost at some frequency. As the Q increases, the frequency at which the gain of the filter is highest approaches the desired cutoff frequency. (As can be seen in the plot above, by the time you get to a Q of 20, the gain at Fc and the maximum gain of the filter are the same.)
It may be intuitively interesting (or interestingly intuitive) to note that, when Q goes to infinity, the gain at Fc also goes to infinity, and (relatively speaking) all other frequencies are infinitely attenuated – so you have a sine wave generator.
So, we know that the gain value at the stated Fc is not -3 dB for all but one value of Q. So, what is the -3 dB point, if we state a desired Fc of 1 kHz and we vary the Q? This is shown in the figure below.
So, varying the Q from 0.1 to 20 varies the actual Fc (or, at least, the -3 dB point) from about 104 Hz to about 1554 Hz.
Or, if we plot the same information as a function (or just a multiple) of the desired Fc, you get the plot below.
So, if you’re sitting in a meeting, and the person in front of you is looking at a measurement of a loudspeaker magnitude response, and they say “could you please put in a low pass filter with a cutoff frequency of 1 kHz and a Q of 0.5” you should start asking questions by what, exactly, they mean by “cutoff frequency”… If not, you might just wind up with nice-looking numbers but strangely-sounding loudspeakers.